US ERA ARCHIVE DOCUMENT

THE BIOREACTOR LANDFILL PARADIGM

Frederick G. Pohland, Ph.D., P.E.
Professor and Weidlein Chair of Environmental
Engineering
University of Pittsburgh
Pittsburgh, PA 15261, USA

2003 EPA Bioreactor Landfills Workshop Arlington, VA

OUTLINE OF PRESENTATION

- Fundamental Definitions
- From the Way We Were
- Today and Beyond

FUNDAMENTAL DEFINITIONS

Reactor

 a containment structure in which reactions are initiated and controlled to optimize a desired outcome

Bioreactor

a biologically-mediated reactor

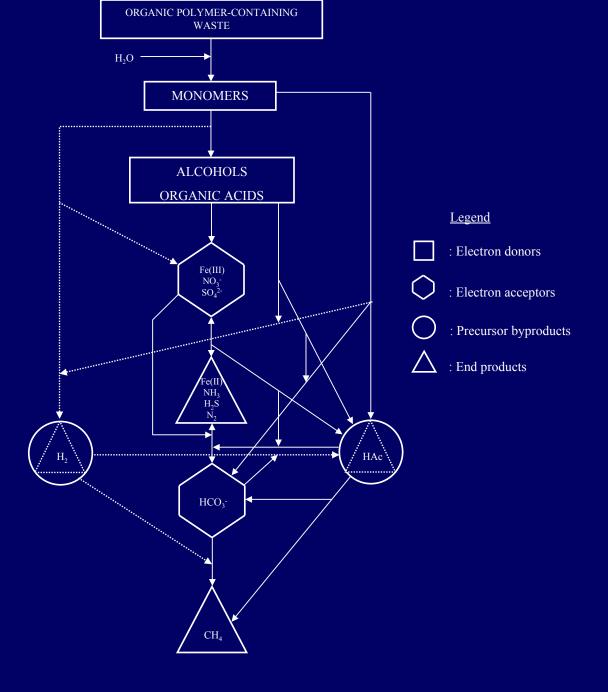
Bioreactor Landfill

a bioreactor where the containment structure is a landfill or a portion of a landfill

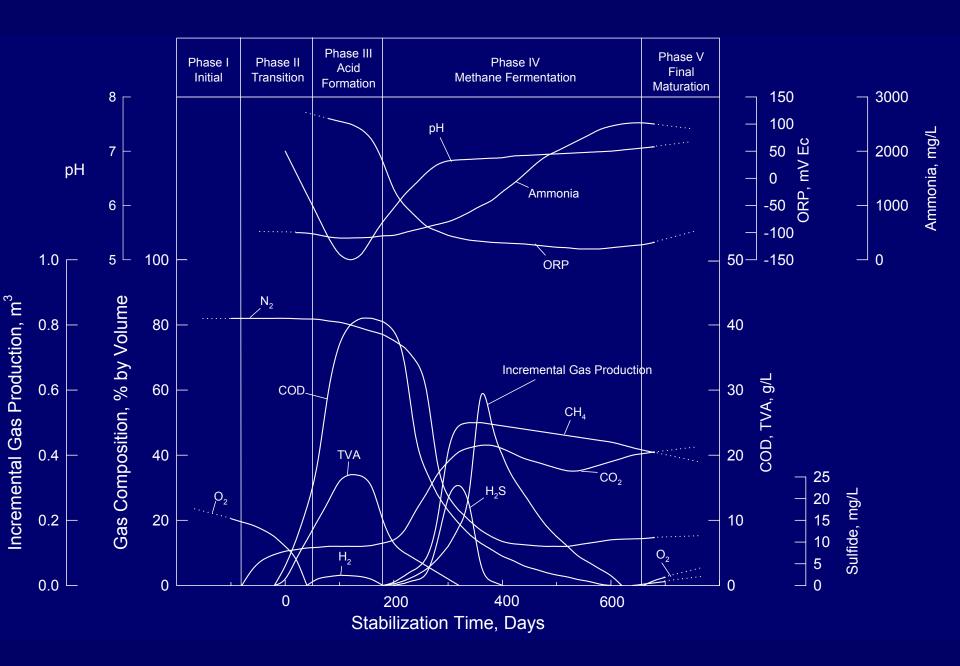
FUNDAMENTAL DEFINITIONS (Cont'd.)

Paradigm

 an example, model or archetype of which all things of the same type are representatives or copies


Bioreactor Landfill Paradigm

 a landfill archetype with leachate recirculation to accelerate and/or enhance biodegradation and stabilization


FROM THE WAY WE WERE

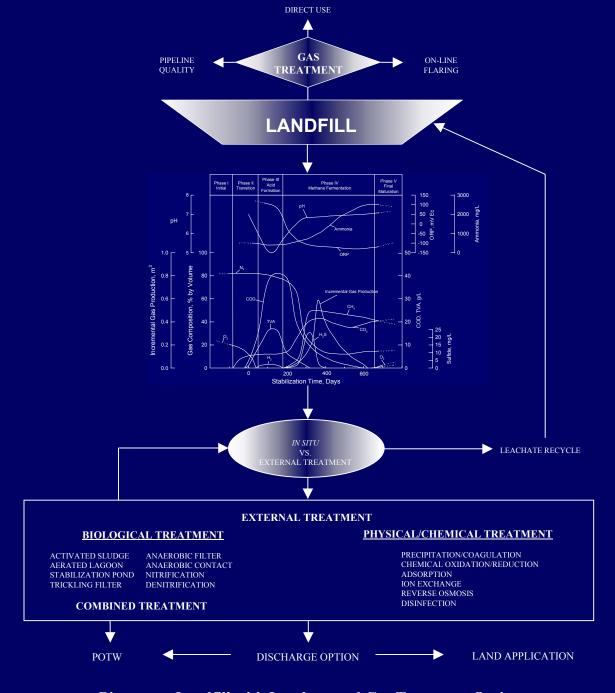
- Past Landfill Practices
 - uncontrolled dumping/impacts
- The Emergence of a Paradigm
 - leachate and gas management
 - engineered landfill systems
- Scientific and Technical Renaissance
 - translation of fundamental scientific principles into rationale design, operation and control
- Regulatory Impacts
 - away from command and control

Waste Conversion Sequences in Landfill Bioreactor Systems

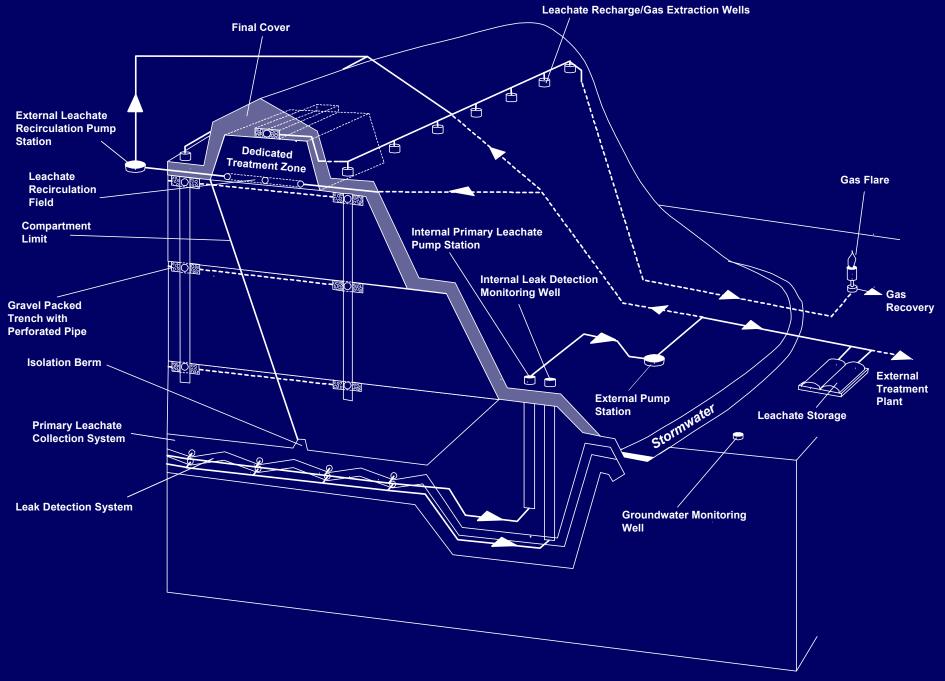
Stabilization characteristics within a bioreactor landfill unit

Redox Half-reaction Responsible during Anaerobic Stabilization in Bioreactor Landfills

Oxidations (Electron Donating Reactions) ^a		ΔG, kJ
Caproate ↔ Propionate	$\mathrm{CH_{3}(CH_{2})_{4}COO^{-}} + 2\mathrm{H_{2}O} \leftrightarrow 2\mathrm{CH_{3}CH_{2}COO^{-}} + \mathrm{H^{+}} + 2\mathrm{H_{2}}$	+48.3
Caproate ↔ Acetate	$CH_3(CH_2)_4COO^- + 4H_2O \leftrightarrow 3CH_3COO^- + 2H^+ + 4H_2$	+96.7
Caproate ↔ Butyrate + Acetate	$CH_3(CH_2)_4COO^- + 2H_2O \leftrightarrow CH_3(CH_2)_2COO^- + CH_3COO^- + H^+ + 2H_2$	+48.4
Propionate ↔ Acetate	$CH_3CH_2COO^- + 3H_2O \leftrightarrow CH_3COO^- + HCO_3^- + H^+ + 3H_2$	+76.1
Butyrate ↔ Acetate	$\mathrm{CH_{3}CH_{2}CH_{2}COO^{-}} + 2\mathrm{H_{2}O} \leftrightarrow 2\mathrm{CH_{3}COO^{-}} + \mathrm{H^{+}} + 2\mathrm{H_{2}}$	+48.1
Ethanol ↔ Acetate	$CH_3CH_2OH + H_2O \leftrightarrow CH_3COO^- + H^+ + 2H_2$	+9.6
Lactate ↔ Acetate	$CH_3CHOHCOO^- + 2H_2O \leftrightarrow CH_3COO^- + HCO_3^- + H^+ + 2H_2$	-4.2
Acetate ↔ Methane	$CH_3COO^- + H_2O \leftrightarrow HCO_3^- + CH_4$	-31.0
Reductions (Electron Accepting Reactions) ^a		
$HCO_3^- \leftrightarrow Acetate$	$2HCO_3^- + 4H_2 + H^+ \leftrightarrow CH_3COO^- + 4H_2O$	-104.6
$HCO_3^- \leftrightarrow Methane$	$HCO_3^- + 4H_2^- + H^+ \leftrightarrow CH_4^- + 3H_2^-O$	-135.6
Sulfate ↔ Sulfide	$SO_4^{2-} + 4H_2 + H^+ \leftrightarrow HS^- + 4H_2O$	-151.9
	$\text{CH}_3\text{COO}^- + \text{SO}_4^{\ 2^-} + \text{H}^+ \leftrightarrow 2\text{HCO}_3^{\ -} + \text{H}_2\text{S}$	-59.9
Nitrate ↔ Ammonia	$NO_3^- + 4H_2^- + 2H^+ \leftrightarrow NH_4^+ + 3H_2O$	-599.6
	$CH_3COO^- + NO_3^- + H^+ + H_2O \leftrightarrow 2HCO_3^- + NH_4^+$	-511.4
Nitrate ↔ Nitrogen Gas	$2NO_3^- + 5H_2^- + 2H^+ \leftrightarrow N_2^- + 6H_2^-O$	-1,120.5
Note: a pH 7, 1 atm, 1 kg/mol activity, 25°C		


Constituents	Dominant Attenuation Mechanisms during Landfill Stabilization Phases
<i>Heavy Metals</i> (Cd, Cu, Cr, Fe, Hg, Ni, Pb,	Conversion to a reduced oxidation state with complex formation and volatilization (Fe, Cr, Hg).
Zn)	Mobilization and salt formation in leachate in the presence of organic (e.g., aromatic hydroxide, carboxylic acid, aromatic amine, humic and fulvic acid) and inorganic (e.g., chloride, sulfate, carbonate) ligands.
	Formation of sparingly soluble hydroxides (Cr) and sulfates (Cd, Cu, Fe, Hg, Ni, Pb, Zn) after sulfate reduction, and precipitation.
	Physical sorption and ion exchange within the waste matrix.
	Filtration and retention within stagnant pools of interstitial water.
Organic Compounds**	
Halogenated Aliphatics (PCE, TCE, DBM)	Volatilization and mobilization in gas and leachate prior to abiotic and biotic reductive dehalogenation under methanogenic, methanotrophic, sulfate reducing and denitrifying conditions.
Chlorinated Benzenes (HCB, TCB, DCB)	Volatilization and sorptive matrix capture prior to partial reductive dechlorination.
Phenolics and Nitroaromatics (DCP, NP, NB)	Mobilization in leachate prior to dechlorination or nitro-group reduction, biodegradation and complexation.
Phthalate Esters (BEHP), Polynuclear Aromatics (NAP), and Pesticides (LIN, DIEL)	Low volatility and mobility in gas and leachate prior to complete or partial biodegradation.

^{*} References: Pohland et al. (2002).


^{**} Perchloroethene (PCE), Trichloroethene (TCE), Dibromomethane (DBM), Hexachlorobenzene (HCB), Trichlorobenzene (TCB), Dichlorobenzene (DCB), Dichlorophenol (DCP), Nitrophenol (NP), Nitrobenzene (NB), Bis (2-ethylhexyl)phthalate (BEHP), Naphthalene (NAP), Lindane (LIN), Diedrin (DIEL); includes daughter products.

TODAY AND BEYOND

- Needs Assessment and Resolution
 - Scientific and technical inquiry/discovery/application
- Rational Management and Oversight
 - Checks and balances
- Stakeholder Harmonization
 - Perspective and participation
- Sustainability
 - Goals achievement

Bioreactor Landfill with Leachate and Gas Treatment Options

Operational features of a bioreactor landfill